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Abstract
We study the asymptotic expansion of the smeared L2-trace of f e−tP 2

where
P is an operator of Dirac type, f is an auxiliary smooth smearing function
which is used to localize the problem, and chiral bag boundary conditions are
imposed. Special case calculations, functorial methods and the theory of ζ - and
η-invariants, are used to obtain the boundary part of the heat-kernel coefficients
a1 and a2.

PACS number: 11.10.−z
Mathematics Subject Classification: 58J50

1. Introduction

Local boundary conditions for operators of Dirac type have been studied in the physical and
mathematical literature with a variety of motivations over many years. Some key points in
this respect are as follows.

(i) Local boundary conditions for massless fermionic fields ruled by a Dirac operator can
be applied to one-loop quantum cosmology [12, 18] and are part of the investigation
of conformal anomalies [29] in Euclidean field theory [19]. Moreover, they are
the first step towards analysing boundary counterterms in supergravity theories, with
the associated unsettled issue of proving finiteness [13] or lack of finiteness [14] of
supergravity theories on manifolds with boundary. In other words, the local boundary
conditions for fermionic fields are part of a general scheme [28] leading to locally
supersymmetric boundary conditions for fermionic and bosonic fields [12, 3], and hence
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can be used to test perturbative consistency of supergravity models in cosmological
[18, 20] or field-theoretical backgrounds.

(ii) Local boundary conditions of chiral bag type are a substitute for introducing small quark
masses to drive the breaking of chiral symmetry [30]. One of the first papers where the
chiral boundary conditions were introduced is the work by Hrasko and Balog [26], and
one of the first applications to chiral bag models is presented in [24].

(iii) Chiral bag boundary conditions have been recently proved to lead to a strongly elliptic
boundary-value problem for the squared Dirac operator [5], and the associated global
heat-kernel asymptotics has been investigated in detail, on the Euclidean ball, in [21]. An
early paper on the role of boundary conditions for Dirac operators is in the framework of
fermionic billiards [2], studied even earlier by Berry and Mondragon [7].

For more general Riemannian manifolds with boundary, however, the investigation of
such a global asymptotics in the chiral bag case is, to our knowledge, an open research field,
and it appears desirable to understand how far can one go by exploiting functorial methods
(e.g. conformal rescalings of the metric) and special case calculations, which are tools
frequently used in invariance theory [23, 27]. For this purpose, both algorithms are exploited
in our paper, where the general mathematical setting is as follows.

Let m = 2m be even and let P = γj∇j + ψ be an operator of Dirac type on a compact
oriented Riemannian manifold M of dimension m, where ∇ is a compatible unitary connection,
i.e. ∇γ = 0. The spinor space has then dimension ds = 2m, and the γ -matrices can be taken
to be skew-adjoint and obeying the Clifford relation

γiγj + γjγi = −2δij .

Near the boundary, let em be the inward-pointing unit normal and γm be the projection of
the γ -matrices on em. Moreover, the generalization of γ5 to an arbitrary even dimension is
provided by

γ̃ ≡ imγ1. . .γm. (1a)

The squared Dirac operator is studied with local boundary conditions of chiral bag type. These
boundary conditions involve a real angle θ and they read

�−ϕ|∂M = 0, (1b)

where we have introduced the ‘projectors’

�∓ ≡ 1
2 (1 ± eθγ̃ γ̃ γm). (1c)

Under the above assumptions, the squared operator P 2 is an operator P̃ of Laplace type [23].
The associated heat kernel can be defined as the solution, for t > 0, of the heat equation(

∂

∂t
+ P̃

)
U(x, x ′; t) = 0, (1d )

obeying the initial condition

lim
t→0

∫
M

dx ′U(x, x ′; t)
(x ′) = 
(x), (1e)

jointly with the boundary conditions Bθ defined by

�−U(x, x ′; t)|x∈∂M = 0, �−PxU(x, x ′; t)|x∈∂M = 0. (1f )

Here, dx ′ denotes the Riemannian volume element of the manifold M and Px denotes the Dirac
operator with respect to the variable x. The L2-trace of the heat semi-group is obtained by
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integrating the fibre trace TrV of the heat kernel diagonal U(x, x; t) over M, and reads as

TrL2(e−tP̃ ) =
∫

M

dx TrV U(x, x; t). (1g)

In our paper, following [23], we are interested in a slight generalization of the previous
equation, where e−t P̃ is ‘weighted’ with a smooth scalar function f on M. More precisely, we
are interested in the asymptotic expansion as t → 0+ of the functional trace

TrL2(f e−tP̃ ) =
∫

M

dx f (x) TrV U(x, x; t). (1h)

The results for the original problem are eventually recovered by setting f = 1, but it is crucial
to keep f arbitrary throughout the set of calculations, as will be clear from the following
sections.

The asymptotic expansion of such a functional trace has the form

TrL2(f e−tP̃ ) ∼
∞∑

n=0

t (n−m)/2an(f, P̃ ,Bθ ). (1i)

Note that there is a change of convention in the indexing of the Seeley coefficients with respect
to the work in [21], i.e. our an is denoted therein by an/2. The coefficients an(f, P̃ ,Bθ ) consist
of two different parts, the interior part aM

n (f, P̃ ) and the boundary part a∂M
n (f, P̃ ,Bθ ), i.e.

an(f, P̃ ,Bθ ) = aM
n (f, P̃ ) + a∂M

n (f, P̃ ,Bθ ). (1j)

The interior parts aM
n (f, P̃ ) are obtained by integrating some geometric invariants (see below)

over M and are independent of the boundary conditions. In contrast, the boundary parts
a∂M

n (f, P̃ ,Bθ ) are obtained by integrating some geometric invariants over the boundary ∂M

and these parts depend in a crucial way on the boundary conditions. They will be the
main concern of our research from now on. The interior invariants are built universally and
polynomially from the metric tensor, its inverse, the Riemann curvature of M, the bundle
curvature (if a vector bundle over M is given) and the endomorphism (or ‘potential’ term) in
the squared operator P 2. By virtue of Weyl’s work on the invariants of the orthogonal group,
these polynomials can be formed by using only tensor products and contraction of tensor
arguments. Here, the structure group is O(m),m being the dimension of M. However, when
a boundary occurs, the boundary structure group is O(m − 1), and the Weyl theorem is used
again to construct invariants.

The structure of this paper is as follows. In section 2 we write down the general form of
the leading coefficients a1 and a2. The special case calculation of [21] and different functorial
techniques are used to determine part of the numerical multipliers of the geometric invariants.
Further special cases are shown in section 3 and the complete a1 and a2 coefficients are
determined. We end the paper with concluding remarks.

2. Determination of the leading coefficients

We first write down the general form of the leading two boundary contributions to the heat
kernel (hereafter, Laa is our notation for the trace of the extrinsic-curvature tensor of the
boundary).

Lemma 2.1. Let f be scalar. There exist universal constants ci(θ,m) such that (hereafter
our notation for the invariant integration measure on ∂M is simply dy)

a∂M
1 (f, P̃ ,Bθ ) = (4π)−(m−1)/2

∫
∂M

dy TrV (c1(θ,m)f ), (2a)
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a∂M
2 (f, P̃ ,Bθ ) = (4π)−m/2

∫
∂M

dy TrV (c2(θ,m)Laaf + c3(θ,m)f ψγ̃ γm

+ c4(θ,m)f ψγm + c5(θ,m)f ψγ̃ + c6(θ,m)f ψ + c7(θ,m)f;m). (2b)

Proof. This is a direct consequence of the Weyl theorem on the invariants of the orthogonal
group [23], as we said at the end of section 1. �

We next determine the universal multipliers ci(θ,m), i = 1, . . . , 7. We first exploit a
known special case. As usual, the hypergeometric function is denoted by 2F1(a, b; c; z).

Lemma 2.2. We have

c1(θ,m) = 1

4
(coshm−1 θ − 1), (2c)

c2(θ,m) = 1

2(m − 1)

{
2m − 5

3
+ (2 − m) 2F1

(
1,

m − 1

2
; 3

2
; tanh2 θ

)}
. (2d)

Proof. In [21] the heat kernel coefficients for the given setting have been evaluated on the
Euclidean ball for the case ψ = 0 and f = 1. The results obtained were

a1 =
√

πds

2m�(m/2)
(coshm−1 θ − 1),

a2 = (2m − 5)ds

3 · 2m�(m/2)
+

ds

2m�(m/2)

{
2F1

(
1,

m − 1

2
; 1

2
; tanh2 θ

)
− (m − 1)

× 2F1

(
1,

m + 1

2
; 3

2
; tanh2 θ

)}
.

The volume of the sphere, which is the boundary of the ball, is

vol(Sm−1) = 2πm/2

�(m/2)
.

Using this to rewrite the coefficient a1 proves assertion (2c), which agrees with equation (40)
in [2] for the first boundary correction to the partition function.

To prove (2d) we first use the Gauss recursion formula, see e.g. [25], equation 9.137.17,

γ 2F1(α, β; γ ; z) − (γ − β) 2F1(α, β; γ + 1; z) − β 2F1(α, β + 1; γ + 1; z) = 0,

to write a2 for the m-ball as

a2 = ds

2m�(m/2)

{
2m − 5

3
+ (2 − m) 2F1

(
1,

m − 1

2
; 3

2
; tanh2 θ

)}
.

Comparison with the general form (2b) then proves assertion (2d). Note that in the given
setting, i.e. with ψ = 0 and f = 1, the c2(θ,m)Laaf term is the only term contributing. �

Remark 2.3. For θ = 0 the boundary conditions reduce to standard boundary conditions of
mixed type. For θ = 0 we have

c1(0,m) = 0,

c2(0,m) = 1

2(m − 1)

{
2m − 5

3
+ (2 − m) · 1

}
= 1

2(m − 1)

1 − m

3
= −1

6
.

To achieve comparison with the known results for mixed boundary conditions note that
the auxiliary Hermitian endomorphism χ needed to define the splitting of the spinor
bundle is [27]

χ = −γ̃ γm.
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Let

�± = 1
2 (1 ± χ)

be the projection on the ± eigenspaces of χ . Mixed boundary conditions are then defined as

Bϕ = �−ϕ|∂M ⊕ (∇m + S)�+ϕ|∂M = 0.

The relevant S for the given setting is

S = − 1
2Laa�+.

Using the fact that TrV (χ) = 0, TrV (�±) = ds/2, the coefficients for the relevant mixed
boundary conditions turn out to be:

a∂M
1 (1, P̃ ,B0) = 0,

a∂M
2 (1, P̃ ,B0) = (4π)−m/2 1

6

∫
∂M

TrV (2Laa + 12S) dy = (4π)−m/2 1

6

∫
∂M

TrV (−Laa) dy,

in agreement with our findings for c1(0,m) and c2(0,m).

We next exploit the fact that the connection ∇ is not canonically defined. To simplify the
notation slightly we assume a localizing function f = 1.

Lemma 2.4. We have

c4(θ,m) = 0.

Proof. Let σi be a skew-adjoint endomorphism of the spinor bundle commuting with the
Clifford structure γ , [σi, γj ] = 0. Then

∇i (ε) = ∇i + εσi

defines a smooth one-parameter family of compatible unitary connections. We define

ψ(ε) := ψ − εγiσi

to ensure that

P(ε) = γi∇i (ε) + ψ(ε) = P

is unaffected by the perturbation; the boundary condition also remains unchanged. Therefore,
the heat trace coefficient (2b) remains unchanged. Using γ̃ γi = −γi γ̃ we evaluate the variation
δ = (d/dε)|ε=0 of the single terms for σa = 0, σm �= 0:

δ TrV (c2(θ,m)Laa) = 0,

δ TrV (c3(θ,m)ψγ̃ γm) = − TrV (c3(θ,m)γmσmγ̃ γm) = TrV (c3(θ,m)σmγ̃ )

= − TrV (c3(θ,m)σmγmγ̃ γm) = − TrV (c3(θ,m)σmγ̃ ) = 0,

δ TrV (c4(θ,m)ψγm) = − TrV (c4(θ,m)γmσmγm) = TrV (c4(θ,m)σm),

δ TrV (c5(θ,m)ψγ̃ ) = − TrV (c5(θ,m)γmσmγ̃ ) = − TrV (c5(θ,m)σmγ̃ )

= TrV (c5(θ,m)σmγmγ̃ ) = TrV (c5(θ,m)γmσmγ̃ ) = 0,

δ TrV (c6(θ,m)ψ) = − TrV (c6(θ,m)γmσm) = − TrV (c6(θ,m)γmσmγ̃ γ̃ )

= TrV (c6(θ,m)γ̃ γmσmγ̃ ) = TrV (c6(θ,m)γmσm) = 0.

For the coefficient to remain unchanged we need c4(θ,m) = 0.
Considering σa �= 0 and σm = 0 does not produce any new information. �

To find more information about the remaining unknown multipliers, one might enlarge
the setting and allow for an endomorphism-valued f . However, apart from the fact that the
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number of invariants goes up to 36 and the calculation gets cumbersome, this does not produce
any relevant information for our problem and we do not present further details.

Instead, we next exploit conformal rescaling techniques.

Lemma 2.5. We have

c7(θ,m) = −m − 1

m − 2

(
c2(θ,m) +

1

6

)
.

Proof. Let f be a smooth function with f |∂M = 0. Define ds2(ε) := e2εf ds2 and P(ε) :=
e−εf P . Let ∇ be a compatible unitary connection. We expand P = γ ν∇∂ν

+ ψ with respect
to a local coordinate system x = (x1, . . . , xm) and use the metric to lower indices and define
γν . If we define

∇(ε)∂µ
:= ∇∂µ

+ 1
2ε(f;νγ νγµ + f;µ),

results of [16] show that ∇(ε) is a compatible unitary connection. Furthermore,

ψ(ε) = e−εf
(
ψ − 1

2ε(m − 1)f;νγ ν
)
.

Note that the boundary condition remains unchanged under conformal variation. The heat
kernel coefficients satisfy the equation

d

dε

∣∣∣∣
ε=0

an(1, P̃ (ε),Bθ ) = (m − n)an(f, P̃ ,Bθ ). (2e)

To study the numerical multiplier c7(θ,m) we need the variations
d

dε

∣∣∣∣
ε=0

τ(ε) = −2f τ − 2(m − 1)�f,

d

dε

∣∣∣∣
ε=0

Laa(ε) = −f Laa − (m − 1)f;m,

where τ = Rijji is the scalar curvature. Applying equation (2e) proves the assertion. �

Remark 2.6. Note that, despite the appearance, the multiplier c7(θ,m) is well defined in
dimension m = 2. Using the result for c2(θ,m) given in equation (2d) we obtain explicitly

c7(θ,m) = −1

2

{
1 − 2F1

(
1,

m − 1

2
; 3

2
; tanh2 θ

)}
. (2f )

For θ = 0 this agrees with the previous computation for mixed boundary conditions.

3. Relating the zeta and eta invariants

In order to determine the numerical multipliers c3(θ,m), c5(θ,m) and c6(θ,m) we relate the
zeta invariant to the eta invariant. We will then evaluate the eta invariant on the m-dimensional
cylinder and ball for the case of an endomorphism-valued f . On the ball we will restrict
to the choices f = 1 and f = γ̃ , respectively, which will allow us to find c5(θ,m) and
c6(θ,m). Instead, on the cylinder we can deal with general f . Performing the two special
case calculations is strictly speaking not necessary, but provides helpful crosschecks of the
answers obtained.

To distinguish the coefficients in the heat trace, TrL2

(
f e−tP 2)

, and in the trace related to

the eta invariant, TrL2

(
f Pe−tP 2)

, in this section we use the notation

TrL2

(
f e−tP 2) ∼

∑
n

t (n−m)/2aζ
n(f, P 2,Bθ ),

TrL2

(
f P e−tP 2) ∼

∑
n

t (n−m−1)/2aη
n(f, P,Bθ ).
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The result we are going to need is the following:

Lemma 3.1. Let f ∈ C∞(End(V )) and let Pε := P + εf . We then have

∂εa
ζ
n

(
1, P 2

ε ,Bθ

) = −2a
η

n−1(f, Pε,Bθ ).

Proof. The proof is insensitive to the boundary conditions imposed and parallels the proof
in [10]. �

Remark 3.2. The very useful property of this result is that the a
ζ
n coefficient for the zeta

invariant is related to the coefficient a
η

n−1 for the eta invariant, which will have a significantly
simpler structure.

In order to apply lemma 3.1 to the coefficient a
ζ

2 we need the general form of the a
η

1
coefficient.

Lemma 3.3. Let f ∈ C∞(End(V )). There exist universal constants di(θ,m) such that

a
η,∂M

1 (f, P,Bθ ) = (4π)−m/2

×
∫

∂M

dy TrV {d1(θ,m)f + d2(θ,m)f γ̃ + d3(θ,m)f γm + d4(θ,m)f γ̃ γm}.

Proof. This follows immediately from the theory of invariants taking into account that f is in
general a matrix-valued endomorphism. �

Remark 3.4. Lemma 3.1 relates the universal constant dj (θ,m), j = 1, . . . , 4, with ci(θ,m),

i = 3, . . . , 6. In particular we have

c3(θ,m) = −2d4(θ,m), c4(θ,m) = −2d3(θ,m),

c5(θ,m) = −2d2(θ,m), c6(θ,m) = −2d1(θ,m).

From lemma 2.4 we conclude d3(θ,m) = 0. We evaluate d1(θ,m) and d2(θ,m) for the
example of the ball and thus find c5(θ,m) and c6(θ,m). We also evaluate d1(θ,m), d2(θ,m)

and d4(θ,m) for the example of the cylinder. This provides checks of the answers for c5(θ,m)

and c6(θ,m) and in addition determines d4(θ,m) and thus c3(θ,m).

For the case f = 1 we follow [22]. The case f = γ̃ is based upon this calculation and
therefore we need to present some details for the case f = 1. We first summarize properties
of the spectral resolution for the Dirac operator on the ball. Let P = γi∇i be the Dirac
operator on the ball and let us denote by ϕ± its eigenfunctions obeying the eigenvalue equation
Pϕ± = ±µϕ±. On writing the eigenvalue equation in this form we have µ > 0. Later on
we will write the eigenvalues of P as λ = ±µ, such that |λ| = µ. Modulo a suitable radial
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normalizing constant C, we may express [15]

ϕ
(+)
± = C

r(m−2)/2

(
iJn+m/2(µr)Z

(n)
+ (�)

±Jn+m/2−1(µr)Z
(n)
+ (�)

)
(3a)

and

ϕ
(−)
± = C

r(m−2)/2

(
±Jn+m/2−1(µr)Z

(n)
− (�)

iJn+m/2(µr)Z
(n)
− (�)

)
. (3b)

Here, Jν(z) are the Bessel functions and Z
(n)
± (�) are the eigenspinors of the Dirac operator P̆

on the sphere [11],

P̆Z(n)
± (�) = ±

(
n +

m − 1

2

)
Z(n)

± (�) for n = 0, 1, . . . .

The degeneracy dn(m) for each eigenvalue is

dn(m) := dimZ(n)
± (�) = 1

2
ds

(
m + n − 2

n

)
.

We next apply the boundary operator which reads explicitly, from equation (1b),

1

2

(
1 −i eθ

i e−θ 1

)
,

to the solutions (3a) and (3b). This produces the following eigenvalue conditions:

Jn+ m
2
(µ) ∓ eθJn+ m

2 −1(µ) = 0 for ϕ
(+)
± , (3c)

Jn+ m
2
(µ) ± e−θJn+ m

2 −1(µ) = 0 for ϕ
(−)
± . (3d )

These equations allow us to rewrite the eta function

η(s; 1, P ,Bθ ) =
∑

λ

sgn(λ)|λ|−s

in terms of a contour integral and to apply the techniques described in detail in [6, 8, 9, 27].
The coefficients in the asymptotic expansion for the eta invariant are then determined by
evaluating residues of η according to [23]

Res η(m − n; 1, P ,Bθ ) = 2a
η
n(1, P ,Bθ )

�
(

m−n+1
2

) . (3e)

For notational convenience we introduce p = n + m/2 − 1. Starting point of the analysis
is [22]

η(s; 1, P ,Bθ ) =
∞∑

n=0

dn(m)
1

2πi

∫
�

dk k−s d

dk
ln

1 + eθ Jp+1(k)

Jp(k)

1 − eθ Jp+1(k)

Jp(k)

− (θ → −θ),

where � is a suitable counterclockwise contour enclosing all solutions of the equations (3c)
and (3d ). After deforming the contour to the imaginary axis this gives

η(s; 1, P ,Bθ ) = 1

πi
cos

(πs

2

) ∞∑
n=0

dn(m)

∫ ∞

0
dzz−s d

dz
ln

1 − i eθ Ip+1(z)

Ip(z)

1 + i eθ Ip+1(z)

Ip(z)

− (θ → −θ)

= 1

πi
cos

(πs

2

) ∞∑
n=0

dn(m)

∫ ∞

0
dzz−s d

dz
ln

1 + p

z
i eθ − i eθ I ′

p(z)

Ip(z)

1 − p

z
i eθ + i eθ

I ′
p(z)

Ip(z)

− (θ → −θ),
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where in the last step we have used the recursion for the modified Bessel function [25]

Iν+1(z) = I ′
ν(z) − ν

z
Iν(z). (3f )

In order to recover the coefficient a
η

1 we only need to consider the leading term in the uniform
p → ∞ asymptotic expansion of the Bessel function [1],

I ′
p(kp)

Ip(kp)
∼ (1 + k2)1/2

k

(
1 + O

(
1

p

))
.

Hence we only need to find the residue of

A0(s; 1) = 1

πi
cos

(πs

2

) ∞∑
n=0

dn(m)p−s

∫ ∞

0
dk k−s d

dk
ln

1 + i
k
eθ − i eθ

√
1+k2

k

1 − i
k
eθ + i eθ

√
1+k2

k

− (θ → −θ)

at s = m − 1.
We first observe that the summation over n produces a multiple of the Barnes zeta

function [4], which is defined by

ζB(s, a) :=
∞∑

n=0

(
m + n − 2

n

)
(n + a)−s .

In detail we have
∞∑

n=0

dn(m)p−s = 1

2
dsζB

(
s,

m

2
− 1

)
.

In order to perform the k-integral we first combine θ and −θ and evaluate the logarithmic
derivative to give

d

dk
ln

1 + i eθ

k

(
1 −

√
1 + k2

)
1 − i eθ

k

(
1 −

√
1 + k2

) − (θ → −θ) = − 4i sinh θ√
1 + k2(2 + k2 + k2 cosh(2θ))

.

The relevant k-integral therefore reads∫ ∞

0
dkk−s(1 + k2)−3/2 1

1 + k2

2(1+k2)
(cosh(2θ) − 1)

= 1

2
�

(
1 +

s

2

) ∞∑
l=0

(−1)l
(

cosh(2θ) − 1

2

)l �
(

1−s
2 + l

)
�

(
3
2 + l

)
= 1√

π
�

(
1 +

s

2

)
�

(
1 − s

2

)
2F1

(
1,

1 − s

2
; 3

2
; 1

2
(1 − cosh(2θ))

)
= 1√

π
�

(
1 +

s

2

)
�

(
1 − s

2

)
2F1

(
1,

1 − s

2
; 3

2
;− sinh2 θ

)
.

From here, with [25]

�

(
1 − s

2

)
= π

cos
(

πs
2

)
�

(
1+s

2

) ,

we easily compute

A0(s; 1) = − 1√
π

ds

�
(
1 + s

2

)
�

(
1+s

2

) sinh θ2F1

(
1,

1 − s

2
; 3

2
;−sinh2 θ

)
ζB

(
s,

m

2
− 1

)
.



2268 G Esposito et al

Using [25]

�
(

m−1
2

)
�(m − 1)

=
√

π

2m−2�
(

m
2

) ,

the coefficient a
η

1 can be cast into the form

a
η

1 (1, P ,Bθ ) = 1

2
�

(m

2

)
Res η(m − 1; 1, P ,Bθ ) = 1

2
�

(m

2

)
Res A0(m − 1; 1)

= − sinh θds

m − 1

2m�
(

m
2

) 2F1

(
1, 1 − m

2
; 3

2
;−sinh2 θ

)
.

Comparing this with the answer on the ball expected from lemma 3.3,

a
η

1 (1, P ,Bθ ) = (4π)−m/2 vol(Sm−1)dsd1(θ,m) = 2

2m�
(

m
2

)dsd1(θ,m),

we read off

d1(θ,m) = −m − 1

2
sinh θ 2F1

(
1, 1 − m

2
; 3

2
;−sinh2 θ

)
. (3g)

From remark 3.4 we then get

c6(θ,m) = (m − 1) sinh θ 2F1

(
1, 1 − m

2
; 3

2
;−sinh2 θ

)
.

To find the universal constant c5(θ,m) we perform the calculation on the ball with f = γ̃ .
This choice complicates the analysis significantly because the normalization constant C and
further integrals over products of Bessel functions come into play. First we note that if
η(s; x, y) denotes the local eta function, then

η(s; x, y) =
∑

µ

µ−s
{
ϕ(±)

+ (x)∗ϕ(±)
+ (y) − ϕ

(±)
− (x)∗ϕ(±)

− (y)
}
.

We want to analyse

TrL2(γ̃ η(s; x, x)) =
∑

µ

µ−s
{〈

ϕ(±)
+

∣∣γ̃ ϕ(±)
+

〉 − 〈
ϕ

(±)
−

∣∣γ̃ ϕ
(±)
−

〉}
, (3h)

with 〈ϕ1|ϕ2〉 denoting the Hilbert space product

〈ϕ1|ϕ2〉 ≡
∫

M

dxϕ∗
1 (x)ϕ2(x).

Since

γ̃ =
(

1 0
0 −1

)
changes the sign of the lower chirality, the normalization constant C does not cancel in the
Hilbert space products appearing in (3h), but instead values of various integrals occur explicitly.
We first observe that

1

C2
=

∫ 1

0
dr r

(
J 2

p+1(µr) + J 2
p(µr)

)
.

We use [25] ∫ 1

0
drrJ 2

ν (µr) = 1

2

{
J 2

ν (µ) − Jν−1(µ)Jν+1(µ)
}
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to find
1

C2
= 1

2

{
J 2

p(µ) + J 2
p+1(µ) − Jp−1(µ)Jp+1(µ) − Jp(µ)Jp+2(µ)

}
.

We use the implicit eigenvalue equations (3c) and (3d ) together with recursion relations for
the Bessel functions [25]

Jp+2(µ) = 2(p + 1)

µ
Jp+1(µ) − Jp(µ), Jp−1(µ) = 2p

µ
Jp(µ) − Jp+1(µ),

to simplify the normalization constants C
(±)
± for the different spinors ϕ

(±)
± . We obtain

C(±)
+ =

√
µ

Jp(µ)

1

(µ + µ e±2θ ∓ (2p + 1) e±θ )1/2
,

C
(±)
− =

√
µ

Jp(µ)

1

(µ + µ e±2θ ± (2p + 1) e±θ )1/2
.

Proceeding in the same way for the quantities
〈
ϕ

(±)
± |γ̃ ϕ

(±)
±

〉
, we find〈

ϕ(±)
+ |γ̃ ϕ(±)

+

〉 = − e±θ

µ + µ e±2θ ∓ (2p + 1) e±θ
= − 1

2 cosh θ

1

µ ∓ p+1/2
cosh θ

,

〈
ϕ

(±)
−

∣∣γ̃ ϕ
(±)
−

〉 = 1

2 cosh θ

1

µ ± p+1/2
cosh θ

.

Using these results in (3h), we obtain the following contour integral representation:

η(s; γ̃ , P ,Bθ ) = − 1

4π i cosh θ

∞∑
n=0

dn(m)

∫
�

dk k−s
d

dk
ln[Jp+1(k) − eθJp(k)]

k − p+1/2
cosh θ

− 1

4π i cosh θ

∞∑
n=0

dn(m)

∫
�

dk k−s
d

dk
ln[Jp+1(k) + eθJp(k)]

k + p+1/2
cosh θ

+ (θ → −θ). (3i)

Note that the counterclockwise contour must only include the zeros of equations (3c) and (3d )
such that the appropriate summation over eigenvalues results. The poles at k = (p+1/2)/cosh θ

should lie outside the contour because they have been introduced by the normalization integral
and need not be summed over. The situation is similar to the analysis for radial smearing
functions, see [17] for more details. This observation is important because when shifting the
contour towards the imaginary axis additional contributions result. Using the index p for all
Bessel functions an intermediate result reads

η(s; γ̃ , P ,Bθ ) = 1

2π i cosh θ
cos

(πs

2

) ∞∑
n=0

dn(m)

×
∫ ∞

0
dzz−s

d
dz

ln
[
I ′
p(z) − p

z
Ip(z) − i eθ Ip(z)

]
iz + p+1/2

cosh θ

+
1

2π i cosh θ
cos

(πs

2

)
×

∞∑
n=0

dn(m)

∫ ∞

0
dzz−s

d
dz

ln
[
I ′
p(z) − p

z
Ip(z) + ieθ Ip(z)

]
iz − p+1/2

cosh θ

+
1

2 cosh θ

∞∑
n=0

dn(m)

(
(p + 1/2)

cosh θ

)−s

× ln
d

dk

[
J ′

p(k) +
(

eθ − p

k

)
Jp(k)

]∣∣∣
k= p+1/2

cosh θ

+ (θ → −θ). (3j)
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The last contribution resulting from the shifting of the contour can be given in the closed form
by using the differential equation for the Bessel function [25][

d2

dz2
+

1

z

d

dz
+

(
1 − ν2

z2

)]
Jν(z) = 0.

We calculate

d

dk
ln

(
J ′

p(k) +
(

eθ − p

k

)
Jp(k)

)∣∣∣
k= p+1/2

cosh θ

= J ′′
p (k) + p

k2 Jp(k) +
(
eθ − p

k

)
J ′

p(k)

J ′
p(k) +

(
eθ − p

k

)
Jp(k)

∣∣∣∣∣
k= p+1/2

cosh θ

= J ′
p(k)

(
eθ − p+1

k

)
+ Jp(k)

(
p(p+1)

k2 − 1
)

J ′
p(k) +

(
eθ − p

k

)
Jp(k)

∣∣∣∣∣
k= p+1/2

cosh θ

= sinh θ − cosh θ

2p + 1
.

Adding the contributions from θ and −θ the sinh θ terms cancel and the summation over n
leads to ζB(s + 1, (m − 1)/2), which has no pole at s = m − 1. Therefore, for the present
purpose this term is irrelevant.

In the remaining integrals in (3j) we need, as before, only the leading term in the Olver–
Debye asymptotic expansion of Bessel functions. Explicitly, with x = 1/ cosh θ , we obtain
to leading order

A0(s; γ̃ ) = − cos
(

πs
2

)
π cosh θ

∞∑
n=0

dn(m)p−s

∫ ∞

0
dk k−s−1

√
1 + k2

[
1

k − ix
+

1

k + ix

]

= −2 cos
(

πs
2

)
π cosh θ

∞∑
n=0

dn(m)p−s

∫ ∞

0
dk

k−s
√

1 + k2

k2 + x2
.

The k-integral is [25]∫ ∞

0
dk

k−s
√

1 + k2

k2 + x2
= 1

2x2

�
(

1−s
2

)
�

(
s
2

)
�

(
1
2

) 2F1

(
1,

1 − s

2
; 1

2
; 1 − 1

x2

)
,

and hence

A0(s; γ̃ ) = −1

2
ds

cosh θ√
π

�
(

s
2

)
�

(
1+s

2

) 2F1

(
1,

1 − s

2
; 1

2
;−sinh2 θ

)
ζB

(
s,

m

2
− 1

)
.

The residue is easily evaluated and via (3e) we compare it with the form given in lemma 3.3
to read

d2(θ,m) = −1

2
cosh θ 2F1

(
1, 1 − m

2
; 1

2
;−sinh2 θ

)
, (3k)

which implies

c5(θ,m) = cosh θ 2F1

(
1, 1 − m

2
; 1

2
;−sinh2 θ

)
.

Remark 3.5. In the calculation just described it is the argument − sinh2 θ that occurs naturally
in the hypergeometric functions. Instead, the constant c2(θ,m) in (2d) and c7(θ,m) in (2f )
have been given using tanh2 θ . In order to provide answers in a unified way one might use the
transformation formula [25]

2F1(α, β; γ ; z) = (1 − z)−α
2F1

(
α, γ − β; γ ; z

z − 1

)
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to write

c2(θ,m) = 1

2(m − 1)

{
2m − 5

3
+ (2 − m) cosh2 θ 2F1

(
1, 2 − m

2
; 3

2
;−sinh2 θ

)}
,

c7(θ,m) = −1

2

{
1 − cosh2 θ 2F1

(
1, 2 − m

2
; 3

2
;−sinh2 θ

)}
.

Remark 3.6. Note that, despite the complicated appearance of the universal constants, for
each specific dimension m a simple function of m and θ results. In particular, whenever the
second argument of 2F1 is 0 or a negative integer, the hypergeometric function reduces to a
finite polynomial in sinh2 θ .

In order to find the missing multiplier c3(θ,m) we present a calculation on the cylinder. In
order to summarize previous results [5] we need to provide some notation. Let M = IR+ × N

be an even dimensional cylinder equipped with the metric ds2 = dx2
m + ds2

N , where xm is
the coordinate in IR+ and plays the role of the normal coordinate, and ds2

N is the metric of
the closed boundary N. The coordinates on N are denoted by y = (y1, y2, . . . , ym−1). To write
down the heat kernel on M for P 2 = (γi∇i )

2 with boundary condition Bθ , we call φω(y) the
eigenspinors of the operator B = γ̃ γmγa∇a , corresponding to the eigenvalue ω, normalized
so that ∑

ω

φ�
ω(y)φω(y ′) = δm−1(y − y ′),

with δm−1 being the Dirac delta function, and∫
N

dy φ∗
ω(y)φω(y) = 1.

Finally we need x = (y, xm), ξ = xm − x ′
m, η = xm + x ′

m, uω(η, t) = η√
4t

− √
tω tanh θ , and

the complementary error function

erfc(x) = 2√
π

∫ ∞

x

dξ e−ξ 2
.

We then have [5]

U(x, x ′; t) = 1√
4πt

∑
ω

φ∗
ω(y ′)φω(y)e−ω2t

{(
e

−ξ2

4t − e
−η2

4t

)
1

+
2�+�

�
+

cosh2(θ)

[
1 +

√
(πt)ω tanh θeu2

ω(η,t)erfc(uω(η, t))
]
e

−η2

4t

}
. (3l)

(Note that although the formal appearance of the heat kernel is identical to the one in [5],
equation (5.1), the meaning of �+ is slightly different. The reason is that [5] considers the
boundary condition resulting from, in our present notation, �+ whereas we consider the one
resulting from �−. Formally the transition is obtained by reversing the sign of the normal and
by using our present notation for �±.) As remarked in [5] the first term is the heat kernel on
the manifold IR×N , which does not encode any information about the boundary contribution.
In the following, without changing the notation, we will ignore this term and we will determine
the boundary contributions to the eta invariant from the remaining terms.

Let f ∈ C∞(End(V )), then we want to consider TrL2(f [PxU(x, x ′; t)]x=x ′); note that
the derivatives need to be performed before the coincidence limit x = x ′ is taken. Given we
have the local form of the heat kernel we can in principle deal with an arbitrary f . For our
present purpose it is easiest to assume f = f (y) only such that the xm-integration can be done
without complication.
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It is natural to introduce the heat kernel UB(y, y ′; t) of the operator B2,

UB(y, y ′; t) =
∑

ω

φ∗
ω(y ′)φω(y) e−ω2t ;

furthermore, to make the single steps easier to follow we use the splitting

U1(x, x ′; t) = − 1√
4πt

∑
ω

φ∗
ω(y ′)φω(y) e−ω2t e

−η2

4t ,

U2(x, x ′; t) = 1√
4πt

∑
ω

φ∗
ω(y ′)φω(y) e−ω2t 2�+�

�
+

cosh2(θ)

× [
1 +

√
(πt)ω tanh θ eu2

ω(η,t) erfc(uω(η, t))
]
e

−η2

4t .

Acting with P and performing the xm-integration, intermediate results are∫ ∞

0
dxmf [PxU1(y, y ′, xm, x ′

m; t)]xm=x ′
m

= 1√
4πt

1

2
f γmUB(y, y ′; t)

− 1

4
f γmγ̃ByUB(y, y ′; t), (3m)

∫ ∞

0
dxmf [PxU2(y, y ′, xm, x ′

m; t)]xm=x ′
m

= − 1

2 cosh2 θ
f γmUB(y, y ′; t)�+�

∗
+

×
[

1√
πt

+ ω tanh θ etω2 tanh2 θ erfc(−√
tω tanh θ)

]
+

1

2 cosh2 θ
f γmγ̃UB(y, y ′; t)�+�

∗
+ etω2 tanh2 θ erfc(−√

tω tanh θ). (3n)

Here, we have used the relation

−1

2

∂

∂xm

[
e−x2

m/t+u2
ω(2xm,t) erfc(uω(2xm, t))

]
= e−x2

m/t

[
1√
πt

+ ω tanh θ eu2
ω(2xm,t) erfc(uω(2xm, t))

]
.

Whereas the asymptotic t → 0 behaviour in (3m) could be easily found from the corresponding
(known) behaviour of the trace of UB , the same is not as simple for the result in (3n). We have
found it most convenient to perform the L2(N)-trace and to relate the above equations to the
zeta and eta function via

ζ(s; f, P 2,Bθ ) = TrL2(f (P 2)−s) = 1

�(s)

∫ ∞

0
dt t s−1 TrL2

(
f e−tP 2)

,

η(s; f, P,Bθ ) = TrL2(f P (P 2)−s) = 1

�
(

s+1
2

) ∫ ∞

0
dt t

s−1
2 TrL2

(
f P e−tP 2)

,

and to evaluate the asymptotic t → 0 expansion from (3e) and

Res ζ(z; f,B2) =
a

ζ
m−1

2 −z
(f, B2)

�(z)
. (3o)

For (3m) the associated relation is readily found,

η1(s; f, P,Bθ ) = 1√
4π

1

2

�
(

s
2

)
�

(
s+1

2

)ζ
( s

2
; f γm,B2

)
− 1

4
η(s; f γmγ̃ , B).
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In order to proceed with (3n) we note first that

tω2 tanh2 θ − tω2 = − tω2

cosh2 θ
, erfc(−√

tω tanh θ) = 1 + erf(
√

tω tanh θ),

with the error function

erf(x) = 2√
π

∫ x

0
dt e−t2

.

The resulting t-integral then is∫ ∞

0
dt t

s−1
2 e− tω2

cosh2 θ (1 + erf(
√

tω tanh θ)) = coshs+1 θ

|ω|s+1

[
�

(
s + 1

2

)
+

2√
π

�
(

1 +
s

2

)
× sinh θ sgn(ω) 2F1

(
1

2
, 1 +

s

2
; 3

2
;−sinh2 θ

)]
.

This produces the following contributions to the eta function:

η2(s; f, P,Bθ ) = − �
(

s
2

)
2
√

π�
(

s+1
2

)
cosh2 θ

ζ
( s

2
;�+�

∗
+f γm,B2

)
− 1

2
sinh θ coshs−2 θη(s;�+�

∗
+f γm,B)

− 1√
π

�
(
1 + s

2

)
�

(
s+1

2

) sinh2 θ coshs−2 θ 2F1

(
1

2
, 1 +

s

2
; 3

2
;− sinh2 θ

)
ζ

( s

2
;�+�

∗
+f γm,B2

)
+

1

2
coshs−1 θη(s;�+�

∗
+f γmγ̃ ;B)

+
coshs−1 θ sinh θ�

(
1 + s

2

)
√

π�
(

s+1
2

) 2F1

(
1

2
; 1 +

s

2
; 3

2
;− sinh2 θ

)
ζ

( s

2
;�+�

∗
+f γmγ̃ , B2

)
.

From here, with the help of (3o) and (3e), it is easy to find the residue of η(s; f, P,Bθ ) at
s = m − 1, needed for the evaluation of a

η

1 (f, P,Bθ ). We find

Res η(m − 1; f, P,Bθ ) = 1√
π�

(
m
2

){
1

2
a0(f γm, B2) − 1

cosh2 θ
a0(�+�

∗
+f γm,B2)

+ (m − 1) sinh θ coshm−2 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;− sinh2 θ

)
× [a0(�+�

∗
+f γmγ̃ , B2) − tanh θa0(�+�

∗
+f γm,B2)]

}
.

The leading heat kernel coefficient a0(G,B2) is of course known for an arbitrary
endomorphism G; it is

a0(G,B2) = (4π)−
m−1

2

∫
N

dy TrV (G).

In order to obtain the invariant form given in lemma 3.3, we evaluate �+�
∗
+ in the form

�+�
∗
+ = 1

2 cosh θ(cosh θ + γ̃ sinh θ − γ̃ γm).
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Adding up all pieces this shows

Res η(m − 1; f, P,Bθ ) = 2

�
(

m
2

) (4π)−m/2
∫

N

dyTrV {f γm · 0

+ f γmγ̃

[
1

2
tanh θ − 1

2
(m − 1) sinh θ coshm−2 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;−sinh2 θ

)]
− f

1

2
(m − 1) sinh θ coshm−1 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;− sinh2 θ

)
− f γ̃

[
1

2 cosh θ
+

1

2
(m − 1) sinh2 θ coshm−2 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;−sinh2 θ

)]}
.

From this result we can read off di(θ,m), i = 1, . . . , 4; we find

d1(θ,m) = −m − 1

2
sinh θ coshm−1 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;−sinh2 θ

)
,

d2(θ,m) = − 1

2 cosh θ
− m − 1

2
sinh2 θ coshm−2 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;− sinh2 θ

)
,

d3(θ,m) = 0,

d4(θ,m) = −1

2
tanh θ +

m − 1

2
sinh θ coshm−2 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;− sinh2 θ

)
.

The result for d1(θ,m) can be seen to agree with the result on the ball, equation (3g), by using
the transformation formula ([25], equation (9.131.1))

2F1(α, β; γ ; z) = (1 − z)γ−α−β
2F1(γ − α, γ − β; γ ; z). (3p)

In order to show that the results for d2(θ,m) coming from the ball and cylinder agree, we need
to show that

cosh2 θ 2F1

(
1, 1 − m

2
; 1

2
;−sinh2 θ

)
= 1 + (m − 1) sinh2 θ coshm−1 θ 2F1

(
1

2
,
m + 1

2
; 3

2
;− sinh2 θ

)
. (3q)

To see this, we first apply the above transformation formula, equation (3p), and then the Gauss
recursion formula ([25], equation (9.137.12))

γ 2F1(α, β; γ ; z) − γ 2F1(α + 1, β; γ ; z) + βz 2F1(α + 1, β + 1; γ + 1; z) = 0

with α = −1/2, β = (m − 1)/2, γ = 1/2 and z = −sinh2 θ . Thus, all results obtained
are consistent and we have determined the full a1 and a2 coefficient for chiral bag boundary
conditions.

4. Concluding remarks

For the case of operators P of Dirac type subject to local boundary conditions of chiral bag
type as in equation (1b), we have studied the asymptotic expansion as t → 0+ of the smeared
L2-trace of the associated heat semigroup, i.e.

TrL2

(
f e−tP 2

)
∼

∞∑
n=0

t (n−m)/2an(f, P 2,Bθ ). (4.1)

On using functorial methods, special case calculations and the relation between η- and
ζ -invariants, we have succeeded in evaluating the full boundary contribution to the a1 and
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a2 coefficients, the functional form of which is given by equations (2a) and (2b). Our
contributions are of technical but non-trivial nature, because both functorial methods and the
theory of the η-invariant require a lot of work to obtain the desired a2 coefficient. It now
appears possible that, by exploiting the methods described in our paper, further heat-kernel
coefficients will be obtained, if they are needed in physical or mathematical applications. In
turn, a better understanding of the spectral functions of modern mathematical physics [27]
will also be gained.
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